• China Science and Technology Core Journals
  • RCCSE China's Core Academic Journals (A-)
  • China Academic Journals Q1 Area in CNKI
  • Included in JST
  • Included in CNKI, WanFang Data and CQVIP Databases
  • Included in Russian Abstract JournaJ (AJ)
  • Included in CA
Advanced Search
LI Jiafeng,MA Zhiyuan,TIAN Lei.Leaching effect and surface characteristics of ion−adsorbed rare earth ores in Aspergillus niger system[J]. Conservation and Utilization of Mineral Resources,2024,44(5):9−15. DOI: 10.13779/j.cnki.issn1001-0076.2024.05.002
Citation: LI Jiafeng,MA Zhiyuan,TIAN Lei.Leaching effect and surface characteristics of ion−adsorbed rare earth ores in Aspergillus niger system[J]. Conservation and Utilization of Mineral Resources,2024,44(5):9−15. DOI: 10.13779/j.cnki.issn1001-0076.2024.05.002

Leaching Effect and Surface Characteristics of Ion−adsorbed Rare Earth Ores in Aspergillus Niger System

More Information
  • Received Date: September 25, 2024
  • Issue Publish Date: October 14, 2024
  • To investigate the law of bioleaching process of ion−adsorbed rare earth ores, and to guide the development of efficient solvent and optimization of leaching process. The leaching characteristics of ion−adsorbed rare earth ores in Aspergillus niger fermentation system were analyzed by shaking bottle experiment, contact angle measurement, open circuit voltage, Tafel, and electrochemical impedance test. The results showed that the leaching rate of rare earths was more affected by the volume percentage of fermentation liquor and time compared with the temperature, and increased with the increase volume percentage of fermentation liquor and time. The leaching rates of La, Ce, and Y reached 95.84%, 94.44%, and 96.73%, respectively, when the volume percentage of fermentation liquor was 75%, the temperature was 25 ℃, and the time was 30 min. The aluminum silicate minerals in the ore showed weak dissolution. The contact angle between the ore and the solution decreased with increasing volume percentage of fermentation liquor and kept decreasing with increasing time. When the droplets spread out for five seconds, the contact angle was minimum 12.53° in pure water, and 16.38°, 33.52°, 43.78°, and 46.58° in 25%, 50%, 75%, and pure fermentation liquor, respectively. With the increase volume percentage of fermentation liquor, the open circuit voltage and corrosion voltage increase sequentially, and the difficulty of clay mineral dissolution decreases sequentially. The bioleaching of ion−adsorbed rare earth ores was subject to the triple resistance of diffusion of solutes in solution, electron transfer from the interfacial double electron layer, and interfacial by−products.

  • [1]
    HE Q, QIU J, CHEN J, et al. Progress in green and efficient enrichment of rare earth from leaching liquor of ion adsorption type rare earth ores[J]. Journal of Rare Earths, 2022, 40(3): 353−364. DOI: 10.1016/j.jre.2021.09.011
    [2]
    谢东岳, 伏彩萍, 唐忠阳, 等. 我国稀土资源现状与冶炼技术进展[J]. 矿产保护与利用, 2021, 41(1): 152−160.

    XIE D Y, FU C P, TANG Z Y, et al. Current status of rare earth resources in China and progress of extracting technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 152−160.
    [3]
    胡朋, 刘国平, 江思宏, 等. 全球稀土矿床的主要类型和成因研究进展[J]. 矿产勘查, 2023, 14(5): 691−700.

    HU P, LIU G P, JIANG S H, et al. Main types and advances on ore genesis of REE deposits worldwide[J]. Mineral Exploration, 2023, 14(5): 691−700.
    [4]
    RASOULNIA P, BARTHEN R, LAKANIEMI A. A critical review of bioleaching of rare earth elements: the mechanisms and effect of process parameters[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(4): 378−427. DOI: 10.1080/10643389.2020.1727718
    [5]
    严纯华, 黄小卫. 2023年中国稀土研究综合评述[J]. 中国稀土学报, 2024, 42(3): 381−418.

    YAN C H, HUANG X W. Review on research of rare earths field in China in 2023[J]. Journal of the Chinese Society of Rare Earths, 2024, 42(3): 381−418.
    [6]
    吴晓燕, 周芳, 徐源来, 等. 风化壳淋积型稀土矿稀土浸取剂的研究进展与展望[J]. 稀土, 2021, 42(3): 109−118.

    WU X Y, ZHOU F, XU Y L, et al. Research progress on the rare earth leaching agents of weathered crust elution−deposited rare earth ore[J]. Chinese Rare Earths, 2021, 42(3): 109−118.
    [7]
    DUTTA T, KIM K, UCHIMIYA M, et al. Global demand for rare earth resources and strategies for green mining[J]. Environmental Research, 2016, 150: 182−190. DOI: 10.1016/j.envres.2016.05.052
    [8]
    NIE W, ZHANG R, HE Z, et al. Research progress on leaching technology and theory of weathered crust elution−deposited rare earth ore[J]. Hydrometallurgy, 2020, 193: 105295. DOI: 10.1016/j.hydromet.2020.105295
    [9]
    李永绣. 离子吸附型稀土资源与绿色提取[M]. 北京: 化学工业出版社, 2014.

    LI Y X. Green extraction of ion−adsorption rare earth resources[M]. Beijing: Chemical Industry Press, 2014.
    [10]
    XIAO Y, CHEN Y, FENG Z, et al. Leaching characteristics of ion−adsorption type rare earths ore with magnesium sulfate[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(11): 3784−3790. DOI: 10.1016/S1003-6326(15)64022-5
    [11]
    刘琦, 周芳, 冯健, 等. 我国稀土资源现状及选矿技术进展[J]. 矿产保护与利用, 2019, 39(5): 76−83.

    LIU Q, ZHOU F, FENG J, et al. Review on rare earth resources and its mineral processing technology in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 76−83.
    [12]
    LI J, XIAO Y, FENG X, et al. Leaching of ion adsorption rare earths and the role of bioleaching in the process: A review[J]. Journal of Cleaner Production, 2024, 468: 143067. DOI: 10.1016/j.jclepro.2024.143067
    [13]
    WANG G, XU J, RAN L, et al. A green and efficient technology to recover rare earth elements from weathering crusts[J]. Nature Sustainability, 2023, 6(1): 81−92.
    [14]
    ZHOU L, YANG J, KANG S, et al. Enhancing leaching efficiency of ion adsorption rare earths by ameliorating mass transfer effect of rare earth ions by applying an electric field[J]. Journal of Rare Earths, 2024, 42(1): 172−180. DOI: 10.1016/j.jre.2023.03.019
    [15]
    胡珊玲, 林燕, 余建平. 超声波强化浸取离子型稀土矿中稀土[J]. 冶金分析, 2012, 32(11): 22−25.

    HU S L, LIN Y, YU J P. Strengthened leaching of rare earths in ionic rare earth ore by ultrasonic[J]. Metallurgical Analysis, 2012, 32(11): 22−25.
    [16]
    唐学昆, 田君, 尹敬群, 等. 田菁胶助浸低品位风化壳淋积型稀土矿研究[J]. 有色金属科学与工程, 2013, 4(2): 85−89.

    TANG X K, TIAN J, YIN J Q, et al. Research on aid−leaching rare earth from low−grade weathered crust elution−deposited rare earth ore with sesbania gum[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 85−89.
    [17]
    朱红英, 夏侯斌, 蒋小岗, 等. 植物浸取剂浸取离子型稀土矿试验探索[J]. 有色金属工程, 2019, 9(10): 36−43.

    ZHU H Y, XIA H B, JIANG X G, et al. Experimental research on leaching ion−adsorption rare earth ores with plant extractant[J]. Nonferrous Metals Engineering, 2019, 9(10): 36−43.
    [18]
    张雪桢, 涂志红, 肖秋东, 等. 微生物浸出及回收稀土研究进展[J]. 金属矿山, 2024(7): 129−138.

    ZHANG X Z, TU Z H, XIAO Q D, et al. Research progress on microorganisms leaching and recovery of rare earth[J]. Metal Mine, 2024(7): 129−138.
    [19]
    王梦园, 黄诗云, 刘红昌, 等. 黄色黏球菌/铜绿假单胞菌−离子型稀土矿相互作用比较研究[J]. 生物学杂志, 2024, 41(3): 11−20+45.

    WANG M Y, HUANG S Y, LIU H C, et al. Comparative study on interactions between Myxococcus xanthus/Pseudomonas aeruginosa and ionic rare earth minerals[J]. Journal of Biology, 2024, 41(3): 11−20+45.
    [20]
    何宏平, 王珩, 李旭锐, 等. 风化壳型稀土矿床中稀土元素的活化与迁移[J/OL]. 地质力学学报, 1−35[2024−09−08]. http://kns.cnki.net/kcms/detail/11.3672.P.20240919.1630.002.html.

    HE H P, WANG H, LI X R, et al. Remobilization and transferring of rare earth elements in the formation of regolith−hosted REE deposit[J/OL]. Journal of Geomechanics, 1−35 [2024−09−08]. http://kns.cnki.net/kcms/detail/11.3672.P.20240919.1630.002.html.
    [21]
    BARNETT M, PALUMBO−ROE B, GREGORY S. Comparison of heterotrophic bioleaching and ammonium sulfate ion exchange leaching of rare earth elements from a madagascan ion−adsorption clay[J]. Minerals, 2018, 8(6): 236. DOI: 10.3390/min8060236
    [22]
    SHEN L, ZHOU H, SHI Q, et al. Comparative chemical and non−contact bioleaching of ion−adsorption type rare earth ore using ammonium sulfate and metabolites of Aspergillus niger and Yarrowia lipolytica to rationalise the role of organic acids for sustainable processing[J]. Hydrometallurgy, 2023, 216: 106019. DOI: 10.1016/j.hydromet.2023.106019
    [23]
    申丽, 赵红波, 邱冠周. 低碳生物冶金技术进展[J]. 中国矿业大学学报, 2022, 51(3): 419−433. DOI: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203003

    SHEN L, ZHAO H B, QIU G Z. Review of low−carbon bio−hydrometallurgical technology[J]. Journal of China University of Mining & Technology, 2022, 51(3): 419−433. DOI: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203003
    [24]
    ZHOU H, WANG J, YU X, et al. Effective extraction of rare earth elements from ion−adsorption type rare earth ore by three bioleaching methods[J]. Separation and Purification Technology, 2024, 330: 125305.
    [25]
    GAO B, GAN M, SUN C, et al. Bioleaching of ion−adsorption rare earth ores by biogenic lixiviants derived from agriculture waste via a cell−free cascade enzymatic process[J]. Hydrometallurgy, 2023, 222: 106189. DOI: 10.1016/j.hydromet.2023.106189
    [26]
    MENG X, ZHAO H, ZHANG Y, et al. Simulated bioleaching of ion−adsorption rare earth ore using metabolites of biosynthetic citrate: an alternative to cation exchange leaching[J]. Minerals Engineering, 2022, 189: 107900. DOI: 10.1016/j.mineng.2022.107900
    [27]
    MENG X, ZHAO H, ZHAO Y, et al. Heap leaching of ion adsorption rare earth ores and rees recovery from leachate with lixiviant regeneration[J]. Science of the Total Environment, 2023, 898: 165417.
    [28]
    MOUNA H M, BARAL S S. A bio−hydrometallurgical approach towards leaching of lanthanum from the spent fluid catalytic cracking catalyst using Aspergillus niger[J]. Hydrometallurgy, 2019, 184: 175−182. DOI: 10.1016/j.hydromet.2019.01.007
    [29]
    李琪, 秦磊, 王观石, 等. 离子吸附型稀土浸矿机制研究现状[J]. 中国稀土学报, 2021, 39(4): 543−554.

    LI Q, QIN L, WANG G S, et al. Leaching mechanism of ion−adsorption rare earth[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(4): 543−554.
    [30]
    DONG H, HUANG L, ZHAO L, et al. A critical review of mineral–microbe interaction and co−evolution: mechanisms and applications[J]. National Science Review, 2022, 9(10): nwac128.
    [31]
    涂志红, 肖秋东, 张雪桢, 等. 微生物技术在稀土资源利用中的研究进展[J]. 中国稀土学报, 2024, 42(3): 468−481.

    TU Z H, XIAO Q D, ZHANG X Z, et al. Research progress of microbial technology in utilization of rare earth resources[J]. Journal of the Chinese Society of Rare Earths, 2024, 42(3): 468−481.
    [32]
    LI J, YANG H, TONG L, et al. Some aspects of industrial heap bioleaching technology: from basics to practice[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(4): 510−528. DOI: 10.1080/08827508.2021.1893720

Catalog

    Article Metrics

    Article views (63) PDF downloads (14) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return