• China Science and Technology Core Journals
  • RCCSE China's Core Academic Journals (A-)
  • China Academic Journals Q1 Area in CNKI
  • Included in JST
  • Included in CNKI, WanFang Data and CQVIP Databases
  • Included in Russian Abstract JournaJ (AJ)
  • Included in CA
Advanced Search
ZHANG Liyou,ZHANG Yihui,JIAO Huazhe,WANG Jinxing,YANG Han.Study on meso-mechanism of deep dewatering of mine filling materials based on ct scanning[J]. Conservation and Utilization of Mineral Resources,2024,44(2):22−31. DOI: 10.13779/j.cnki.issn1001-0076.2024.02.003
Citation: ZHANG Liyou,ZHANG Yihui,JIAO Huazhe,WANG Jinxing,YANG Han.Study on meso-mechanism of deep dewatering of mine filling materials based on ct scanning[J]. Conservation and Utilization of Mineral Resources,2024,44(2):22−31. DOI: 10.13779/j.cnki.issn1001-0076.2024.02.003

Study on Meso-mechanism of Deep Dewatering of Mine Filling Materials Based on CT Scanning

More Information
  • Received Date: March 30, 2024
  • Available Online: May 22, 2024
  • Aiming at the problems of difficult thickening and dewatering of total tailings and low underflow mass concentration, the deep thickening and dewatering of slurry flocs based on the meso−structure of slurry flocs at different heights of the compressed bed was studied.Through the dynamic thickening experiment of the whole tailings, the slurry sample of the compressed bed layer was obtained. With the help of SEM and high−precision CT scanning equipment, the obtained floc structure was scanned and three−dimensionally reconstructed to analyze the pore structure variation along the direction of the compressed bed layer. The results show that the average pore radius of the five groups of slurry is 9.58 μm, 9.23 μm, 8.76 μm, 8.63 μm and 8.31 μm respectively. The mass concentration of slurry at the top of the bed is 59.4%, and the flocs are loose and irregular. The mass concentration of slurry at the bottom is 62.1%, and the flocs are dense and regular. Compared with the top and bottom slurry, the porosity decreased by 3.7 percentage points, the connected pore ratio decreased by 35.53%, the average coordination number of pores decreased by 22.73%, and the pore connectivity was greatly reduced. This thesis the microscopic pore structure characteristics are quantitatively characterized from the microscopic point of view, which provides a theoretical basis for further dehydration of mine filling materials.

  • [1]
    白俊豪, 祝朝辉, 时永志, 等. 河南省金矿山尾矿金属资源调查及综合利用分析[J]. 矿物学报, 2022, 42(5): 683−691.

    BAI J H, ZHU C H, SHI Y Z, et al. Investigation and comprehensive utilization analysis of metal resources in tailings of gold mines in He’nan Province, China[J]. Acta Mineralogica Sinica, 2022, 42(5): 683−691.
    [2]
    SUN W, JI B, KHOSO S A, et al. An extensive review on restoration technologies for mining tailings[J]. Environmental Science and Pollution Research, 2018, 25: 33911−33925. DOI: 10.1007/s11356-018-3423-y
    [3]
    ARAUJO F S M, TABORDA−LLANO I, NUNES E B, SANTOS R M. Recycling and reuse of mine tailings: a review of advancements and their implications[J]. Geosciences, 2022, 12: 319. DOI: 10.3390/geosciences12090319
    [4]
    吴爱祥, 李红, 杨柳华, 等. 深地开采, 膏体先行[J]. 黄金, 2020, 41(9): 51−57.

    WU A X, LI H, YANG L H, et al. Cemented paste backfill paves the way for deep mining[J]. Gold, 2020, 41(9): 51−57.
    [5]
    阮竹恩, 吴爱祥, 焦华喆, 等. 我国全尾砂料浆浓密研究进展与发展趋势[J]. 中国有色金属学报, 2022, 32(1): 286−301.

    RUAN Z E, WU A X, JIAO H Z, et al. Advances and trends on thickening of full−tailings slurry in China[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(1): 286−301.
    [6]
    WU A X, YANG Y, CHENG H Y, et al. Status and prospects of paste technology in China[J]. Chinese Journal of Engineering, 2018, 40(5): 517−525.
    [7]
    KIVENTERÄ J, PERUMAL P, YLINIEMI J, et al. Mine tailings as a raw material in alkali activation: A review[J]. International Journal of Minerals Metallurgy and Materials, 2020, 27: 1009−1020. DOI: 10.1007/s12613-020-2129-6
    [8]
    张雷, 郭利杰, 许文远, 等. 细尾砂在矿山充填应用中关键工艺与材料的研究进展[J]. 材料导报, 2023, 37(23): 102−112.

    ZHANG L, GUO L J, XU W Y, et al. Research on crucial technological and material issues of applying fine tailings to mine filling: a review[J]. Materials Reports, 2023, 37(23): 102−112.
    [9]
    Yang Y, Zhou X, CHEN X, et al. Numerical simulation of tailings flow from dam failure over complex terrain[J]. Materials, 2022, 15: 2288. DOI: 10.3390/ma15062288
    [10]
    KINNUNEN P H M, KAKSONEN A H. Towards circular economy in mining: Opportunities and bottlenecks for tailings valorization[J]. Journal of Cleaner Production, 2019, 228: 153−160. DOI: 10.1016/j.jclepro.2019.04.171
    [11]
    丁冉伟. 浅析尾矿库扬尘综合治理[J]. 中国金属通报, 2022, (13): 162−164.

    DING R W. Analysis of Comprehensive Dust Control in Tailings Ponds, China Metal Bulletin, 2022, (13): 162−164.
    [12]
    GOU M F, ZHOU L F, THEN N, et al. Utilization of tailings in cement and concrete: A review[J]. Science and Engineering of Composite Materials, 2019, 26(1): 449−464. DOI: 10.1515/secm-2019-0029
    [13]
    RI L G, LIANG Y S, QIN W, et al. Exploration on comprehensive utilization technology of mine tailings[J]. E3S Web of Conferences, 2020, 165(12): 03003−03011.
    [14]
    KYNCH G J. A theory of sedimentation[J]. Transactions of the Faraday society, 1952, 48: 166−176. DOI: 10.1039/tf9524800166
    [15]
    RAIMUND B, KENNETH H K, JOHN D. Towers. Mathematical model and numerical simulation of the dynamics of flocculated suspensions in clarifier−thickeners[J]. Chemical Engineering Journal, 2005, 111(2): 119−134.
    [16]
    STEPHENS D W, FAWELL P D. Process equipment optimization using CFD and surrogate models[J]. Progress in Computational Fluid Dynamics, An International Journal, 2015, 15(2): 102. DOI: 10.1504/PCFD.2015.068818
    [17]
    牛永辉, 程海勇, 吴顺川, 等. 动态剪切环境超细全尾砂絮凝沉降特性[J]. 有色金属工程, 2022, 12(8): 139−148. DOI: 10.3969/j.issn.2095-1744.2022.08.019

    NIU Y H, CHENG H Y, WU S C, et al. Flocculation and sedimentation characteristics of ultra‐fine full tailing sand in dynamic shear environment[J]. Nonferrous Metals Engineering, 2022, 12(8): 139−148. DOI: 10.3969/j.issn.2095-1744.2022.08.019
    [18]
    王勇, 那庆, 杨军, 等. 深锥浓密机泥层高度与压力关系研究[J]. 中国矿业大学学报, 2022, 51(2): 257−262.

    WANG Y, NA Q, YANG J, et al. Research on the relationship between mud height and pressure of deep cone thickener[J]. Journal of China University of Mining & Technology, 2022, 51(2): 257−262.
    [19]
    焦华喆, 王树飞, 吴爱祥, 等. 剪切浓密床层孔隙网络模型与导水通道演化[J]. 工程科学学报, 2019, 41(8): 987−996.

    JIAO H Z, WANG S F, WU A X, et al. Pore network model of tailings thickener bed and water drainage channel evolution under the shearing effect[J]. Chinese Journal of Engineering, 2019, 41(8): 987−996.
    [20]
    位乐, 王登科, 陈旭, 等. 煤的孔隙结构分形特征研究[J]. 科技创新与应用, 2023, 13(9): 53−56.

    WEI L, WANG D K, CHEN X, et al. Research on fractal characteristics of coal pore structure[J]. Technology Innovation and Application, 2023, 13(9): 53−56.
  • Cited by

    Periodical cited type(2)

    1. 马浩凯. 条带开采工作面充填体强度确定及水化硬化机理. 山西能源学院学报. 2024(04): 81-84 .
    2. 代志国,杨纪光,陆昊,王向明,彭海彬. 玉龙矿业中细全尾砂静动态絮凝沉降试验研究. 世界有色金属. 2024(23): 184-186 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (39) PDF downloads (3) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return