• China Science and Technology Core Journals
  • RCCSE China's Core Academic Journals (A-)
  • China Academic Journals Q1 Area in CNKI
  • Included in JST
  • Included in CNKI, WanFang Data and CQVIP Databases
  • Included in Russian Abstract JournaJ (AJ)
  • Included in CA
Advanced Search
XIANG Xinyue,YE Guohua,ZHU Siqin,RONG Yiyang,ZHANG Yun,SONG Changxu.Solvent extraction of vanadium from vanadium−bearing acid leaching solution[J]. Conservation and Utilization of Mineral Resources,2023,43(5):170−178. DOI: 10.13779/j.cnki.issn1001-0076.2023.07.008
Citation: XIANG Xinyue,YE Guohua,ZHU Siqin,RONG Yiyang,ZHANG Yun,SONG Changxu.Solvent extraction of vanadium from vanadium−bearing acid leaching solution[J]. Conservation and Utilization of Mineral Resources,2023,43(5):170−178. DOI: 10.13779/j.cnki.issn1001-0076.2023.07.008

Solvent Extraction of Vanadium from Vanadium−bearing Acid Leaching Solution

More Information
  • Received Date: December 28, 2022
  • Issue Publish Date: October 30, 2023
  • Aiming at the problem of vanadium purification and enrichment for vanadium-containing acid leaching solution, the research progress of vanadium extraction is reviewed. In conventional extraction, acidic phosphorus extractant has the advantages of high efficiency of vanadium extraction and fast phase separation, but its impurity removal is not complete and requires a large amount of acid. The alkaline amine extractant has good selectivity and thorough impurity removal, but it is easy to produce the third phase. Chelating extractant can shorten the extraction process, and the free acid in the raffinate can also be recycled, which has good economic benefits, but its degradation problem has not been solved. Among the new extraction methods, the liquid membrane extraction process is simple, the mass transfer efficiency is high, and the metal ion enrichment ratio is high. However, it has the disadvantages of long extraction process, large dosage of reagents, and high organic phase loss. Ionic liquids have many advantages, but they cannot be put into large−scale production and application due to their high preparation cost. Microemulsion extraction has the advantages of fast separation speed, high separation efficiency, and good selectivity, but it will produce ammonia nitrogen wastewater. In recent years, synergistic extraction has been widely studied, but how to effectively inhibit its antagonistic effect and make it fully play its role needs further study.

  • [1]
    胡洋, 何东升, 谢志豪, 等. 石煤型钒矿预富集技术研究现状[J]. 金属矿山, 2018(12): 73−79.

    HU Y, HE D S, XIE Z H, et al. Research status of pre-enrichment technology of stone coal type vanadium ore[J]. Metal Mine, 2018(12): 73−79.
    [2]
    YUAN R, LI S L, CHE Y, et al. A critical review on extraction and refining of vanadium metal[J]. International Journal of Refractory Metals and Hard Materials, 2021, 101: 105696.
    [3]
    JING W, TAO J, WANG J P, et al. Cleaner extraction of vanadium from vanadium-chromium slag based on MnO2 roasting and manganese recycle[J]. Journal of Cleaner Production, 2020, 261: 121205. DOI: 10.1016/j.jclepro.2020.121205
    [4]
    YING Z W, SONG Y, ZHU K Y, et al. A cleaner and sustainable method to recover vanadium and chromium from the leaching solution based on solvent extraction[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107384. DOI: 10.1016/j.jece.2022.107384
    [5]
    丁满堂. 含钒钢渣提钒利用研究[J]. 矿产综合利用, 2020(6): 69−72.

    DING M T. Study on vanadium extraction from vanadium−containing steel slag[J]. Comprehensive Utilization of Minerals, 2020(6): 69−72.
    [6]
    杨用龙. 石煤湿法提钒工艺及其溶液化学研究[D]. 湘潭: 湘潭大学, 2010.

    YANG Y L. Study on wet vanadium extraction process from stone coal and its solution chemistry[D]. Xiangtan: Xiangtan University, 2010.
    [7]
    HE Y, ZHANG Y M, HUANG J, et al. Extraction of vanadium(V) from a vanadium-bearing shale leachate through bifunctional coordination in Mextral 984H extraction system[J]. Separation and Purification Technology, 2022, 288: 120452. DOI: 10.1016/j.seppur.2022.120452
    [8]
    淡维杰, 肖连生, 张贵清, 等. 萃取法提取铬(Ⅲ)分离铁(Ⅱ)的研究[J]. 有色金属科学与工程, 2017, 8(3): 35−41.

    DAN W J, XIAO L S, ZHANG G Q, et al. Extraction of chromium (Ⅲ) from iron (Ⅱ)[J]. Nonferrous Metal Science and Engineering, 2017, 8(3): 35−41.
    [9]
    许亮. 从高浓度的硫酸溶液中萃取钒的研究[D]. 长沙: 中南大学, 2013.

    XU L. Extraction of vanadium from high concentration sulfuric acid solution[D]. Changsha: Central South University, 2013.
    [10]
    陈子杨, 叶国华, 左琪, 等. 有机胺类萃取剂构效关系及其萃钒的研究进展[J]. 钢铁钒钛, 2020, 41(3): 8−15.

    CHEN Z Y, YE G H, ZUO Q, et al. Structure-activity relationship of organic amine extractants and research progress of vanadium extraction[J]. Steel Vanadium Titanium, 2020, 41(3): 8−15.
    [11]
    TANG Y, YE G H, ZHANG H, et al. Solvent extraction of vanadium with D2EHPA from aqueous leachate of stone coal after low–temperature sulfation roasting[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129584. DOI: 10.1016/j.colsurfa.2022.129584
    [12]
    吴杨. 季铵盐类离子液体对盐酸介质中金属离子的萃取分离研究[D]. 济南: 山东大学, 2022.

    WU Y. Study on the extraction and separation of metal ions in hydrochloric acid medium by quaternary ammonium ionic liquids[D]. Jinan: Shandong University, 2022.
    [13]
    边振忠. 钒钛磁铁矿精矿铵盐焙烧回收有价金属的研究[D]. 北京: 北京科技大学, 2022.

    BIAN Z Z. Study on recovery of valuable metals from vanadium titanomagnetite concentrate by ammonium salt roasting[D]. Beijing: Beijing University of Science and Technology, 2022.
    [14]
    HU Y B, ZHANG Y M, XUE N N, et al. Nφ−pH diagrams and kinetics of V2O3 prepared by solution-phase hydrogen reduction[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(4): 1290−1300. DOI: 10.1016/S1003-6326(22)65874-6
    [15]
    高蔷. 钒酸铁合成方法的实验研究[D]. 沈阳: 东北大学, 2013.

    GAO Q. Experimental study on the synthesis of iron vanadate[D]. Shenyang: Northeast University, 2013.
    [16]
    朱思琴, 叶国华, 亢选雄, 等. 含钒酸浸液净化与富集的研究进展[J]. 钢铁钒钛, 2022, 43(5): 10−22.

    ZHU S Q, YE G H, KANG X X, et al. Research progress on purification and enrichment of acid leaching solution containing vanadium[J]. Steel Vanadium Titanium, 2022, 43(5): 10−22.
    [17]
    宋强, 童雄, 谢贤, 等. 溶剂萃取法分离提取镍和钴的研究现状及展望[J/OL]. 中国有色金属学报, 2022: 1-23.

    SONG Q, TONG X, XIE X, et al. Research status and prospect of separation and extraction of nickel and cobalt by solvent extraction[J/OL]. Chinese Journal of Nonferrous Metals, 2022: 1-23.
    [18]
    胡艺博. 从低品位石煤钒矿中提取五氧化二钒的研究[D]. 昆明: 昆明理工大学, 2019.

    HU Y B. Study on the extraction of vanadium pentoxide from low-grade stone coal vanadium ore[D]. Kunming: Kunming University of Science and Technology, 2019.
    [19]
    冯雪茹. 采用P204萃取钒渣酸浸液中钒的基础研究[D]. 沈阳: 东北大学, 2015.

    FENG X R. Fundamental study on extraction of vanadium from acid leaching solution of vanadium slag by P204[D]. Shenyang: Northeastern University, 2015.
    [20]
    田宇楠. 从钒钛磁铁矿渣的废酸浸出液中萃取钒的研究[D]. 沈阳: 沈阳理工大学, 2015.

    TIAN Y N. Extraction of vanadium from waste acid leaching solution of vanadium-titanium magnetite slag[D]. Shenyang: Shenyang University of Technology, 2015.
    [21]
    朱军, 郭继科, 马晶, 等. 从含钒石煤酸浸液中溶剂萃取钒的试验研究[J]. 湿法冶金, 2011, 30(4): 293−297.

    ZHU J, GUO J K, MA J, et al. Experimental study on solvent extraction of vanadium from acid leaching solution of vanadium-bearing stone coal[J]. Hydrometallurgy, 2011, 30(4): 293−297.
    [22]
    陈嘉娴. 甲烷基质膜生物反应器中钒酸盐的生物还原及胞外聚合物的响应[D]. 杭州: 浙江大学, 2018.

    CHEN J X. Biological reduction of vanadate and response of extracellular polymer in methane matrix membrane bioreactor[D]. Hangzhou: Zhejiang University, 2018.
    [23]
    刘仕元. 钒渣中有价元素Fe、Mn、V、Cr和Ti选择性氯化及高值化基础研究[D]. 北京: 北京科技大学, 2019.

    LIU S Y. Basic research on selective chlorination and high value of valuable elements Fe, Mn, V, Cr and Ti in vanadium slag[D]. Beijing: Beijing University of Science and Technology, 2019.
    [24]
    陈倩文. 脂肪酸基绿色萃取剂在稀土和钍回收中的应用[D]. 赣州: 江西理工大学, 2020.

    CHEN Q W. Application of fatty acid-based green extractant in rare earth and thorium recovery[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.
    [25]
    景晓华. 伯胺萃取分离钒铬机理及应用基础研究[D]. 天津: 南开大学, 2018.

    JING X H. Mechanism and application of primary amine extraction and separation of vanadium and chromium[D]. Tianjin: Nankai University, 2018.
    [26]
    孙颖, 张廷安, 吕国志, 等. 含钒酸性溶液阴离子萃取分离钒铁的研究[J]. 有色金属(冶炼部分)2021(4): 41−47.

    SUN Y, ZHANG T A, LV G Z, et al. Study on anion extraction separation of ferrovanadium from vanadium-containing acidic solution[J]. Nonferrous metals (smelting part), 2021 (4): 41−47.
    [27]
    YE G H, HU Y B, TONG X, et al. Extraction of vanadium from direct acid leaching solution of clay vanadium ore using solvent extraction with N235[J]. Hydrometallurgy, 2018, 177: 27−33. DOI: 10.1016/j.hydromet.2018.02.004
    [28]
    LI W B, GUO R N, LI Y J, DONG Z H. Recovery of vanadium from direct acid leaching solutions of weathered crust vanadium‐titanium magnetite via solvent extraction with N235[J]. Hydrometallurgy, 2022, 213: 105913. DOI: 10.1016/j.hydromet.2022.105913
    [29]
    张爽. 从粘土钒矿直接酸浸液中萃取提钒的研究[D]. 昆明: 昆明理工大学, 2015.

    ZHANG S. Extraction of vanadium from direct acid leaching solution of clay vanadium ore[D]. Kunming: Kunming University of Science and Technology, 2015.
    [30]
    Y. A. El-Nadi, N. S. Awwad, A. A. Nayl. A comparative study of vanadium extraction by Aliquat-336 from acidic and alkaline media with application to spent catalyst[J]. International Journal of Mineral Processing, 2009, 92(3): 115−120.
    [31]
    林政隆. 废SCR脱硝催化剂碱浸液中钒的分离提取研究[D]. 杭州: 浙江大学, 2021.

    LIN Z L. Study on separation and extraction of vanadium from alkali leaching solution of spent SCR denitration catalyst[D]. Hangzhou: Zhejiang University, 2021.
    [32]
    李强, 肖连生, 张贵清, 等. 季铵盐N263萃取分离钨酸钠中的钒[J]. 稀有金属与硬质合金, 2017, 45(2): 20−27.

    LI Q, XIAO L S, ZHANG G Q, et al. Extraction and separation of vanadium from sodium tungstate by quaternary ammonium salt N263[J]. Rare metals and cemented carbides, 2017, 45(2): 20−27.
    [33]
    HONG L, ZHANG Y M, HUANG J, et al. A synergistic approach for separating vanadium and impurities in black shale acid leaching solution using a mixture of Cyanex272 and N235[J]. Separation and Purification Technology, 2019, 215: 335−341. DOI: 10.1016/j.seppur.2018.12.088
    [34]
    王丽萍, 李超, 李世春. 粉煤灰中稀散金属锗的富集回收技术研究进展[J]. 稀有金属与硬质合金, 2022, 50(6): 27−32.

    WANG L P, LI C, LI S C. Research progress on enrichment and recovery technology of rare metal germanium in fly ash[J]. Rare metals and cemented carbides, 2022, 50(6): 27−32.
    [35]
    贾蓝波, 王玲, 郭紫璇, 等. 含钒溶液萃取分离富集钒的研究进展[J]. 中国有色金属学报, 2022, 32(11): 3489−3504.

    JIA L B, WANG L, GUO Z X, et al. Research progress on extraction, separation and enrichment of vanadium from vanadium-containing solution[J]. Chinese Journal of Nonferrous Metals, 2022, 32(11): 3489−3504.
    [36]
    赵倩. 液膜分离技术在环境领域的应用[J]. 广东化工, 2022, 49(16): 108−109+123.

    ZHAO Q. Application of liquid membrane separation technology in environmental field[J]. Guangdong Chemical Industry, 2022, 49(16): 108−109+123.
    [37]
    刘红, 张一敏, 黄晶. N235支撑液膜分离页岩提钒酸浸液及传质机理[J]. 中国有色金属学报, 2020, 30(9): 2216−2223.

    LIU H, ZHANG Y M, HUANG J. Separation of acid leaching solution and mass transfer mechanism of vanadium extraction from shale by N235 supported liquid membrane[J]. Chinese Journal of Nonferrous Metals, 2020, 30(9): 2216−2223.
    [38]
    罗大双, 黄晶, 张一敏, 等. N235−煤油支撑液膜体系中钒萃取分离性能研究[J]. 有色金属(冶炼部分), 2018(6): 33−38.

    LUO D S, HUANG J, ZHANG Y M, et al. Study on vanadium extraction and separation performance in N235-kerosene supported liquid membrane system[J]. Nonferrous Metals (smelting part), 2018(6): 33−38.
    [39]
    唐悦, 叶国华, 胡渝杰, 等. 离子液体在萃取分离中的应用现状与发展趋势[J]. 矿冶, 2021, 30(6): 54−62.

    TANG Y, YE G H, HU Y J, et al. Application status and development trend of ionic liquids in extraction separation[J]. Mining and Metallurgy, 2021, 30(6): 54−62.
    [40]
    LUO D S, HUANG J, ZHANG Y M, et al. Highly efficient separation and extraction of vanadium from a multi-impurity leachate of vanadium shale using tri-n-octylmethylammonium chloride[J]. Separation and Purification Technology, 2020, 230: 115842.
    [41]
    魏君怡. 烷基咪唑类离子液体萃取分离钒铬渣酸浸液的实验研究[D]. 沈阳: 东北大学, 2018.

    WEI J Y. Experimental study on extraction and separation of acid leaching solution of vanadium chromium slag by alkyl imidazole ionic liquids[D]. Shenyang: Northeastern University, 2018.
    [42]
    HE J G, TAO W J, DONG G Z. Study on extraction performance of vanadium (Ⅴ) from aqueous solution by octyl-imidazole ionic liquids extractants[J]. Metals, 2022, 12(5): 854. DOI: 10.3390/met12050854
    [43]
    周超, 李勇, 薛向欣. N-辛基吡啶类离子液体对钒渣水浸液中钒的萃取机理[J]. 中国有色金属学报, 2020, 30(1): 172−179.

    ZHOU C, LI Y, XUE X X. Extraction mechanism of vanadium from aqueous leaching solution of vanadium slag by N-octyl pyridine ionic liquid[J]. Chinese Journal of Nonferrous Metals, 2020, 30(1): 172−179.
    [44]
    陈传林. 微乳液法从强碱性环境中提钒研究[D]. 赣州: 江西理工大学, 2010.

    CHEN C L. Extraction of vanadium from strong alkaline environment by microemulsion method[D]. Ganzhou: Jiangxi University of Science and Technology, 2010.
    [45]
    郭赟. 微乳液萃取钒制备高纯钒产品的方法研究[D]. 重庆: 重庆大学, 2021.

    GUO Y. Study on the preparation of high purity vanadium products by microemulsion extraction of vanadium[D]. Chongqing: Chongqing University, 2021.
    [46]
    郭赟, 李鸿乂, 林敏敏, 等. W/O微乳液体系从沉钒废水中萃取钒[C]//第三届钒钛微合金化高强钢开发应用技术暨第四届钒产业先进技术交流会论文集. 2017: 169−173.

    GUO Y, LI H Y, LIN M M, et al. Extraction of vanadium from vanadium precipitation wastewater by W/O microemulsion system[C]//Proceedings of the 3rd V-Ti microalloyed high strength steel development and application technology and the 4th vanadium industry advanced technology exchange conference. 2017: 169−173.
    [47]
    黄洁. 微乳液萃取制备高纯V2O5的方法研究[D]. 重庆: 重庆大学, 2021.

    HUANG J. Study on the preparation of high purity V2O5 by microemulsion extraction[D]. Chongqing: Chongqing University, 2021.
    [48]
    朱志全. 微乳液提取铝酸钠溶液中钒的工艺研究[D]. 赣州: 江西理工大学, 2010.

    ZHU Z Q. Study on extraction of vanadium from sodium aluminate solution by microemulsion[D]. Ganzhou: Jiangxi University of Science and Technology, 2010.
    [49]
    陈金清, 朱志全, 陈传林. W/O微乳液对强碱体系中钒的萃取[J]. 有色金属(冶炼部分), 2010(4): 29−32+44.

    CHEN J Q, ZHU Z Q, CHEN C L. W/Omicroemulsion extraction of vanadium in strong alkali system[J]. Nonferrous metals (smelting part), 2010(4): 29−32+44.
    [50]
    钟涛, 乐长高. 微乳液在萃取分离中的应用研究[J]. 化工时刊, 2008(10): 26−58.

    ZHONG T, LE C G. Application of microemulsion in extraction separation[J]. Chemical Times, 2008(10): 26−58.
    [51]
    周富荣, 杜金萍, 万昆. 微乳液膜连续处理焦化厂含酚废水的试验研究[J]. 工业水处理, 2007(3): 49−52.

    ZHOU F R, DU J P, WAN K. Experimental study on continuous treatment of phenolic wastewater from coking plant by microemulsion membrane[J]. Industrial Water Treatment, 2007(3): 49−52.
    [52]
    郭秋松, 刘志强, 朱薇, 等. D2EHPA/TBP协同萃取除铁铬锰制备超纯硫酸氧钒[J]. 材料研究与应用, 2013, 7(2): 77−81.

    GUO Q S, LIU Z Q, ZHU W, et al. D2EHPA/TBP synergistic extraction of iron, chromium and manganese to prepare ultrapure vanadyl sulfate[J]. Material Research and Application, 2013, 7(2): 77−81.
    [53]
    师启华. 钒页岩硫酸焙烧−协同萃取提钒工艺及机理研究[D]. 武汉: 武汉科技大学, 2018.

    SHI Q H. Study on the process and mechanism of sulfuric acid roasting-synergistic extraction of vanadium from vanadium shale[D]. Wuhan: Wuhan University of Science and Technology, 2018.
    [54]
    阳征斐, 陈友顺, 张豪杰, 等. “抑制−萃取”法从含铁酸溶液中选择性提钒[J]. 应用化学, 2020, 37(7): 803−809.

    YANG Z F, CHEN Y S, ZHANG H J, et al. Selective vanadium extraction from ferrous acid solution by 'inhibition-extraction' method[J]. Applied Chemistry, 2020, 37(7): 803−809.
    [55]
    张一敏, 薛楠楠, 刘涛, 等. 钒页岩全湿法绿色提取技术[J]. 中国矿业大学学报, 2022, 51(3): 520−531.

    ZHANG Y M, XUE N N, LIU T, et al. Entire wet green extraction technology of vanadium shale[J]. Journal of China University of Mining and Technology, 2022, 51(3): 520−531.
    [56]
    LI X B, DENG Z G, WEI C, et al. Solvent extraction of vanadium from a stone coal acidic leach solution using D2EHPA/TBP: Continuous testing[J]. Hydrometallurgy, 2015, 154: 359−363.
  • Cited by

    Periodical cited type(4)

    1. 杨志飞,陈敏,张灵犀. 铝灰还原富钒渣制备钒铁合金的研究. 钢铁钒钛. 2024(02): 13-19 .
    2. 黄欣雨,甘晨,张名扬,邱丽娜,弓爱君,董艺. 湿法磷酸萃取技术发展现状与研究进展. 工程科学学报. 2024(11): 1948-1959 .
    3. 彭聃,佘健,胡璟,王婉玉. 钾长石酸浸工艺中氟循环利用可行性研究. 中国资源综合利用. 2024(08): 83-85 .
    4. 项新月,叶国华,项朋志,荣一阳,张云,宋昌溆. 功能性离子液体靶向萃取提钒研究进展. 钢铁钒钛. 2024(06): 39-49 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (78) PDF downloads (23) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return