Citation: | ZHANG Yiye,CUI Baoyu,WANG Xiaoyu,MA Congyu,NING Qin,LI Qiang.Experimental dynamic settlement of Beiying iron tailings[J]. Conservation and Utilization of Mineral Resources,2023,43(3):160−167. DOI: 10.13779/j.cnki.issn1001-0076.2023.03.019 |
Dynamic settling experiments were carried out assisted with static settling experiments to improve the thickening performance of Benxi Beiying iron tailings. The static optimizing experiments of flocculant were firstly carried out to explore the effects of flocculant type, aging time, and mass concentration of flocculant on flocculation settling performance, taking the height of clear layer, settling rate and solid mass concentration as indicators. Then experiments in the dynamic thickening device were carried out to investigate the effect of mass concentration of slurries, feed rate and dosing rate of flocculant on the flocculation settling under the continuous feed of slurries and flocculant. The accumulation rate, solid mass in the overflow and mass concentration of the underflow were used to evaluate the above experiments. Results shows that the cationic polyacrylamide (PAM) with aging time of 24 h and mass concentration of 0.3‰ had better flocculation performance than the on-site flocculant in the static settling experiment. At the 3 min of static settling experiments, the settling of tailings tended to stabilize. In this case, the height of clear layer was 42 mm, the settling rate was 0.03 mm/min and the solid mass concentration was 70.24%. The iron tailings achieved best dynamic settling effect, when the feed concentration of slurries was 14%, the feeding rate was 0.4 L/min, and the dosing rate was 12 mL/min. In this case, the solid mass in the overflow was 279 mg/L and the mass concentration of the underflow was 68.05%. Under the same conditions, the dynamic settling effect in the plant site was poor, with the solid mass of 282 mg/L in the overflow and the mass concentration of 62.32% of the underflow.
[1] |
徐彪, 李肖, 陈煊年, 等. 本溪某铁选矿厂尾矿综合利用研究[J]. 矿冶工程, 2018, 38(1): 67−70.
XU B, LI X, CHEN X N, et al. Comprehensive utilization of tailings from iron concentrator in Benxi[J]. Mining and Metallurgical Engineering, 2018, 38(1): 67−70.
|
[2] |
李玉凤, 包景岭, 张锦瑞. 铁尾矿资源开发利用现状分析[J]. 中国矿业, 2015, 24(11): 77−81+121. DOI: 10.3969/j.issn.1004-4051.2015.11.017
LI Y F, BAO J L, ZHANG J R. Status analysis of iron tailings comprehensive utilization[J]. China Mining Magazine, 2015, 24(11): 77−81+121. DOI: 10.3969/j.issn.1004-4051.2015.11.017
|
[3] |
张彪, 姜春志. 铁尾矿资源综合利用及研究进展[J]. 中国金属通报, 2020(11): 68−69.
ZHANG B, JIANG C Z. Comprehensive utilization and research progress of iron tailings resources[J]. China Metal Bulletin, 2020(11): 68−69.
|
[4] |
刘昊, 刘廷安. 尾矿处理的新方法—膏状尾矿地面堆放技术[J]. 矿业工程, 2003, 1(6): 25−31.
LIU H, LIU Y A. New method of tailings disposal—overground stockpiling of pasted tailings[J]. Mining Engineering, 2003, 1(6): 25−31.
|
[5] |
胡博, 黄凌云, 孙鑫, 等. 矿山废水处理技术研究进展[J]. 矿产保护与利用, 2021, 41(1): 46−52.
HU B, HUANG L Y, SUN X, et al. Research progress of mine wastewater treatment technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 46−52.
|
[6] |
石竹, 袁江, 邵伟. 典型历史遗留无主尾矿库环境治理工程实例[J]. 矿冶工程, 2021, 41(3): 158−161. DOI: 10.3969/j.issn.0253-6099.2021.03.037
SHI Z, YUAN J, SHAO W. Case study—environmental treatment for a typical abandoned tailings pond[J]. Mining and Metallurgical Engineering, 2021, 41(3): 158−161. DOI: 10.3969/j.issn.0253-6099.2021.03.037
|
[7] |
蒋文利. 铁矿选矿高悬浮物循环水处理与回用研究[D]. 武汉: 武汉理工大学, 2018.
JIANG W L. Study on treatment and reuse of high suspended solids circulating[D]. Wuhan: Wuhan University of Technology, 2018.
|
[8] |
梁效, 王勇海, 吴天骄, 等. 无机和有机絮凝剂复配对铁尾矿沉降特性研究[J]. 金属矿山, 2020(11): 129−133.
LIANG X, WANG Y H, WU T J, et al. Study on the settlement characteristics of iron tailings by combination of inorganic and organic flocculants[J]. Metal Mine, 2020(11): 129−133.
|
[9] |
龙国兵, 张红梅, 石肖, 等. 三氯化铁对细粒铁尾矿絮凝沉降的影响研究[J]. 矿业研究与开发, 2022, 42(9): 110−115.
LONG G B, ZHANG H M, SHI X, et al. Study on the effect of ferric chloride on flocculation and settlementation of fine iron tailings[J]. Mining Research and Development, 2022, 42(9): 110−115.
|
[10] |
韩瑞, 吕宪俊, 李琳, 等. 非离子絮凝剂对微细粒尾矿絮凝沉降的影响[J]. 中国矿业, 2016, 25(5): 97−101.
HAN R, LV X J, LI L, et al. The impact of non-ionic flocculant on the settling performance of micro-fine tailings[J]. China Mining Magazine, 2016, 25(5): 97−101.
|
[11] |
崔宝玉, 王小宇, 张云海, 等. 聚丙烯酰胺在矿物加工领域的应用现状及策略[J]. 中国矿业, 2022, 31(4): 109−115+123.
CUI B Y, WANG X Y, ZHANG Y H, et al. Application status and strategy of polyacrylamide in mineral processing[J]. China Mining Magazine, 2022, 31(4): 109−115+123.
|
[12] |
GJ K. A theory of sedimentation[J]. Transactions of the Faraday society, 1952, 48: 166−176. DOI: 10.1039/tf9524800166
|
[13] |
何丽莉. 煤矸石制备复合絮凝剂聚合氯化铝铁钙(PAFCC)的研究[D]. 沈阳: 东北大学, 2014.
HE L L. Study on the synthesis of a new complex coagulant polyaluminum ferric calcium chloride with gangue[D]. Shenyang: Northeastern University, 2014.
|
[14] |
AT O, PD F, JD S, et al. The impact of polyacrylamide flocculant solution age on flocculation performance[J]. International Journal of Mineral Processing, 2002, 67(1/2/3/4): 123−144.
|
[15] |
彭乃兵, 吴爱祥, 王洪江, 等. 全尾砂絮凝沉降工艺研究[J]. 矿业研究与开发, 2015, 35(7): 35−38.
PENG N B, WU A X, WANG H J, et al. Research on flocculation sedimentation technology of unclassified-tailings[J]. Mining Research and Development, 2015, 35(7): 35−38.
|
[16] |
温震江, 杨晓炳, 李立涛, 等. 基于RSM-BBD的全尾砂浆絮凝沉降参数选择及优化[J]. 中国有色金属学报, 2020, 30(6): 1437−1445. DOI: 10.11817/j.ysxb.1004.0609.2020-36421
WEN Z J, YANG X B, LI L T, et al. Selection and optimization of flocculation sedimentation parameters of unclassified tailings slurry based on RSM-BBD[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6): 1437−1445. DOI: 10.11817/j.ysxb.1004.0609.2020-36421
|
[17] |
环境保护部, 国家质量监督检验检疫总局.铁矿采选工业污染物排放标准:GB 28661—2012[S]. 北京: 中国环境科学出版社, 2012.
MEP, AQSIQ. Emission standard of pollutants for mining and mineral processing industry: GB 28661—2012[S]. Beijing: China Environmental Press, 2012.
|