Citation: | ZHANG Haiqi, ZHU Likuan, ZHAO Haibo, LIU Lei, GUO Feng, LIU Guangxue, YI Yuejun, ZHANG Hongli. First Discovery of the Longquanping Pegmatitic High-purity Quartz Deposit in the Area of Lushi, Henan: Implications for Exploration[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 153-158. DOI: 10.13779/j.cnki.issn1001-0076.2022.04.018 |
The Longquanping deposit of Lushi, Henan Province, is located in the eastern part of the North Qinling Tectonic Belt. The deposit is hosted by both the Shicaogou Formation of the Qinling Group and the Zhaigen Formation of the Xiahe Group. The granite pegmatites which contain quartz ores are mainly composed of 11%-20% plagioclase, 25%-38% quartz and 7%-9% muscovite, with a small amount of garnet (1%-2%) and biotite (< 1%). The SiO2 content of quartz is up to 99.997% after deep purification. Compared with the Spruce Pine pegmatite-type high-purity quartz deposit in the United States, the two share similar metallogenic geological background and geochemical characteristics. The study suggests that the North Qinling and Altai areas have the potential to find pegmatite-type high-purity quartz deposits. It is noted that the pegmatites which are free of rare metal mineralisation, with low abundance of fluid inclusions, are ideal targets for the discovery of high-purity quartz deposits. The discovery of the Longquanping deposit has an important demonstration and leading role in the geological exploration of high-purity quartz deposits in China.
[1] |
汪灵, 党陈萍, 李彩侠, 等. 中国高纯石英技术现状与发展前景[J]. 地学前缘, 2014, 21(5): 267-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405026.htm
WANG L, DANG C P, LI C X, et al. Technology of high-purity quartz in China: Status quo and prospect[J]. Earth Science Frontiers, 2014, 21(5): 267-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405026.htm
|
[2] |
汪灵. 石英的矿床工业类型与应用特点[J]. 矿产保护与利用, 2019(6): 39-47. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=fb53518c-c1a2-4a9b-be8a-8696fd04bbfa
WANG L. Industrial types and application characteristics of quartz ore deposits[J]. Conservation and Utilization of Mineral Resources, 2019(6): 39-47. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=fb53518c-c1a2-4a9b-be8a-8696fd04bbfa
|
[3] |
郭文达, 韩跃新, 朱一民, 等. 高纯石英砂资源及加工技术分析[J]. 金属矿山, 2019(2): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201902006.htm
GUO W D, HAN Y X, ZHU Y M, et al. Analysis of high-purity quartz sand resources and it's processing technology[J]. Metal Mine, 2019(2): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201902006.htm
|
[4] |
张晔, 陈培荣. 美国Spruce Pine与新疆阿尔泰地区高纯石英伟晶岩的对比研究[J]. 高校地质学报, 2010, 16(4): 426-435. DOI: 10.3969/j.issn.1006-7493.2010.04.002
ZHANG Y, CHEN P R. Characteristics of granitic pegmatite with high-purity quartz in Spruce Pine region, USA and Altay region of Xinjiang, China[J]. Geological Journal of China Universities, 2010, 16(4): 426-435. DOI: 10.3969/j.issn.1006-7493.2010.04.002
|
[5] |
陈金铎, 包民伟, 张迎年, 等. 河南卢氏伟晶岩脉及典型钽铌矿床成矿地质特征[J]. 矿产保护与利用, 2014(4): 13-17. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=fe11a287-b281-491d-ac0e-1ed7e51c6cf2
CHEN J D, BAO M W, ZHANG Y N, et al. The metallogenic geological characteristics of pegmatite veins and typical tantalum-niobium ore deposit in Lushi county of Henan[J]. Conservation and Utilization of Mineral Resources, 2014(4): 13-17. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=fe11a287-b281-491d-ac0e-1ed7e51c6cf2
|
[6] |
胡呈祥, 包民伟, 李贞岐, 等. 豫西伟晶岩型稀有金属矿勘查方法[J]. 现代矿业, 2016(5): 156-172. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201604051.htm
HU C X, BAO M W, LI Z Q, et al. Exploration method for pegmatite type rare metal deposits in western Henan[J]. Modern Mining, 2016(5): 156-172. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201604051.htm
|
[7] |
曲凯, 尹青青, 刘行, 等. 北秦岭柳树湾花岗伟晶岩型铀矿床中黑云母矿物化学特征及其地质意义[J]. 铀矿地质, 2016, 35(6): 330-342. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201906002.htm
QU K, YIN Q Q, LIU X, et al. Mineral chemistry feature and its geological significance of biotite from liushuwan granitic pegmatite type uranium deposit in North Qinling orogen[J]. Uranium Geology, 2016, 35(6): 330-342. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201906002.htm
|
[8] |
张成立, 刘良, 王涛, 等. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用[J]. 科学通报, 2013, 58(23): 2323-2329. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201323015.htm
ZHAGN C L, LIU L, WANG T, et al. Granitic magmatism related to early Paleozoic continental collision in the North Qinling belt[J]. Chin Sci Bull, 2013, 58(23): 2323-2329. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201323015.htm
|
[9] |
王涛, 张宗清, 王晓霞, 等. 秦岭造山带核部新元古代碰撞变形及其时代-强变形同碰撞花岗岩与弱变形脉体锆石SHRIMP年龄限定[J]. 地质学报, 2005, 79(2): 220-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200502010.htm
WANG T, ZHANG Z Q, WANG X X, et al. Neoproterozoic collisional deformation in the core of the Qinling orogen and its age: constrained by zircon SHRIMP dating of strongly deformed syn-collisional granites and weakly deformed granitic veins[J]. Acta Geologica Siniga, 2005, 79(2): 220-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200502010.htm
|
[10] |
王九一. 全球高纯石英原料矿的资源分布与开发现状[J]. 岩石矿物学杂志[J]. 2021, 40(1): 131-141. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202101015.htm
WANG J Y. Global high purity quartz deposits: Resources distribution and exploitation status[J]. Acta Petrologica et Mineralogica, 2021, 40(1): 131-141. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202101015.htm
|
[11] |
MILLER B V, FETTER A H, STEWART K G. Plutonism in three orogenic pulses, Eastern Blue Ridge Province, southern Appalachians[J]. Geological Society of America Bulletin, 2006, 118(1/2): 171-184.
|
[12] |
SWANSON S E, VEAL W B. Mineralogy and petrogenesis of pegmatites in the Spruce Pine District, North Carolina, USA[J]. Journal of Geosciences, 2010, 55: 27-42. http://www.onacademic.com/detail/journal_1000035808576910_c077.html
|
[13] |
李伍平, 王涛, 王晓霞. 北秦岭灰池子花岗质复式岩体的源岩讨论——元素-同位素地球化学制约[J]. 地球科学(中国地质大学学报), 2001, 26(3): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200103008.htm
LI W P, WANG T, WANG X X. Source of huichizi granitoid complex pluton in northern Qinling, gentral China: constrained in element and isotopic geochemistry[J]. Earth Science——Journal of China University of Geosciences, 2001, 26(3): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200103008.htm
|
[14] |
张勇, 刘国奇, 刘颖, 等. 典型高纯石英矿点成矿地质环境调查成果报告[D]. 南昌: 东华理工大学, 2021: 6-9.
ZHANG Y, LIU G Q, LIU Y, et al. Report on the results of geological environment investigation on the formation of a typical high-purity quartz ore site[D]. Nanchang: Donghua University of Technology, 2021: 6-9.
|
[15] |
焦丽香. 我国脉石英资源开发利用现状及供需分析[J]. 中国非金属矿工业导刊, 2019(2): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK201902004.htm
JIAO L X. Current situation and supply demand analysis of the development and utilization of vein quartz resources in China[J]. China Nonmetallic Minerals Industry, 2019(2): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK201902004.htm
|
[16] |
张海啟, 马亚梦, 谭秀民, 等. 高纯石英中杂质特征及深度化学提纯技术研究进展[J/OL]. 矿产保护与利用, 2022. DOI: 10.13779/j.cnki.issn1001-0076.2022.01.031.
ZHANG H Q, MA Y M, TAN X M, et al. Research progress on impurity characteristics and deep chemical purification technology in high-purity quartz[J/OL]. Conservation and Utilization of Mineral Resources, 2022. DOI: 10.13779/j.cnki.issn1001-0076.2022.01.031.
|
[17] |
张海啟, 倪文山, 刘磊, 等. 低射频功率-电感耦合等离子体质谱法测定高纯石英样品中痕量钾[J/OL]. 矿产保护与利用, 2022. DOI: 10.13779/j.cnki.issn1001-0076.2022.01.033.
ZHANG H Q, NI W S, LIU L, et al. Determination of ultra-trace potassium in high purity quartz by low RF power-inductively coupled plasma mass spectrometry[J/OL]. Conservation and Utilization of Mineral Resources, 2022. DOI: 10.13779/j.cnki.issn1001-0076.2022.01.033.
|
[18] |
MVLLER A, WANVIK J E, IHLEN P M. Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway[C]//GöTZE J, MöCKEL R. Quartz: Deposits, Mineralogy and Analytics. Berlin: Springer-Verlag, 2012: 71-118.
|
[19] |
马超, 冯安生, 刘长淼, 等. 高纯石英原料矿物学特征与加工技术进展[J]. 矿产保护与利用, 2019(6): 48-57. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=f8d0ad56-4a9b-498c-9bfc-4bfca34bcc24
MA C, FENG A S, LIU C M, et al. Mineralogical characteristics and progress in processing technology of raw materials of high purity quartz[J]. Conservation and Utilization of Mineral Resources, 2019(6): 48-57. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=f8d0ad56-4a9b-498c-9bfc-4bfca34bcc24
|
1. |
王九一. 印度北部某4N8级高纯石英原料研究及其对我国的找矿启示. 岩石矿物学杂志. 2025(01): 152-166 .
![]() | |
2. |
王小山,郭霞,王宏. 伟晶岩型石英矿制备高纯石英选矿提纯试验研究. 中国非金属矿工业导刊. 2025(01): 74-78 .
![]() | |
3. |
陈虎,周芳春,柳清琦,汪宣民,曾乐,粟峰. 湖南仁里矿床高纯石英原料矿资源评价. 中国地质调查. 2025(01): 40-48 .
![]() | |
4. |
赵海波,王红杰,张勇,马驰,朱黎宽. 东秦岭伟晶岩型高纯石英矿地球化学、锆石U-Pb及Hf同位素研究:对高纯石英找矿方向的探讨. 中国地质. 2024(01): 42-56 .
![]() | |
5. |
袁晶,唐春花,周渝,钱正江,刘小龙,孙超. 江西棠阴花岗伟晶岩型高纯石英原料杂质元素含量特征研究及评价方法探讨. 东华理工大学学报(自然科学版). 2024(01): 34-44 .
![]() | |
6. |
周起凤,秦克章,唐冬梅,马留锁. 东秦岭官坡地区稀有金属伟晶岩成矿机制. 岩石学报. 2024(09): 2729-2752 .
![]() | |
7. |
赵海波,张倩,张勇,王红杰,张飞,马驰,吕鹏瑞,朱黎宽. 天然石英矿物微量元素赋存特征研究进展及对高纯石英找矿的指示. 西北地质. 2024(05): 106-119 .
![]() | |
8. |
郭峰,朱黎宽,李建国,谭秀民,马驰,张亮,王红杰,张顺新. 北秦岭龙泉坪伟晶岩型高纯石英矿床黑云母成分特征及地质意义. 矿物岩石. 2024(04): 71-82 .
![]() | |
9. |
王振轩,刘波,孙红娟,游敦翰,彭同江. 江西花岗伟晶岩制备4N级高纯石英工艺研究. 非金属矿. 2023(04): 58-61+66 .
![]() | |
10. |
李金超,栗亚芝,孔会磊. 中国高纯石英产业链现状及发展建议. 西北地质. 2023(05): 214-222 .
![]() | |
11. |
罗小南,索忠连,茹朋,刘伟,杨琳,朱荣彬,王安书,张亚增. 河南省高纯石英资源现状及产业发展的思考. 矿产勘查. 2023(11): 2271-2277 .
![]() | |
12. |
汪灵. 高纯石英的概念及其原料品级划分. 矿产保护与利用. 2022(05): 55-63 .
![]() | |
13. |
刘红召,柳林,王威,曹耀华,王洪亮,曹飞. 某花岗伟晶岩型石英矿中长石的浸出性能研究. 矿产保护与利用. 2022(05): 35-42 .
![]() |