Citation: | CHEN Tao, JIAN Sheng, XIE Xian, ZHANG Ying, LI Jie, LI Boqi, ZHU Hui. Research Progress on Comprehensive Utilization of Vanadium-Titanium Magnetite Tailings[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 174-178. DOI: 10.13779/j.cnki.issn1001-0076.2021.02.023 |
At present, the methods of comprehensive utilization of vanadium-titanium magnetite tailings are mainly divided into two categories: tailings reseparation (Valuable metal recycling) and overall utilization. According to the nature and composition of the tailings, in the tailings reseparation uses gravity separation, magnetic separation, flotation, chemical beneficiation and combined separation and other beneficiation processes are used mainly for recovery the valuable elements from the tailings; In overall utilization tailings are mainly used to prepare building materials, ceramics and tiles. This method can consume a large amount of tailings and can effectively solve the problem of tailings inventory. Based on the existing research work, it is pointed out that the research on the "physical properties" (physical and chemical properties) of the tailings is the basis for the recovery of valuable elements from the tailings, and strengthens the joint separation process, fine-grained useful mineral recovery technology and new equipment research is the development direction of comprehensive utilization of vanadium-titanium magnetite tailings in the future.
[1] |
XIAOFEI G, SHUJUAN D, QIANQIAN W. Influence of different comminution flowsheets on the separation of vanadium titano-magnetite[J]. Minerals Engineering, 2020, 149: 106268. DOI: 10.1016/j.mineng.2020.106268
|
[2] |
YULEI S, YUFENG G, TAO J, et al. Separation and recovery of iron and titanium from oxidized vanadium titano-magnetite by gas-based reduction roasting and magnetic separation[J]. Journal of Materials Research and Technology, 2019, 8(3): 3036-3043. DOI: 10.1016/j.jmrt.2018.05.031
|
[3] |
肖六均. 攀枝花钒钛磁铁矿资源及矿物磁性特征[J]. 金属矿山, 2001(1): 28-30. DOI: 10.3321/j.issn:1001-1250.2001.01.011
|
[4] |
王勋, 韩跃新, 李艳军, 等. 钒钛磁铁矿综合利用研究现状[J]. 金属矿山, 2019(6): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201906006.htm
|
[5] |
王兆才, 陈双印, 储满生, 等. 含钒钛铁精矿氧化球团气基竖炉直接还原模拟试验[J]. 钢铁钒钛, 2012, 33(2): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201202009.htm
|
[6] |
徐丽君, 李亮, 陈六限, 等. 攀西地区钒钛磁铁矿综合回收利用现状及发展方向[J]. 四川有色金属, 2011(1): 1-5. DOI: 10.3969/j.issn.1006-4079.2011.01.001
|
[7] |
于宏东, 王丽娜, 曲景奎, 等. 中国典型钒钛磁铁矿的工艺矿物学特征与矿石价值[J]. 东北大学学报(自然科学版), 2020, 41(2): 275-281. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202002019.htm
|
[8] |
WANG S, GUO YF, JIANG T, et al. Appropriate titanium slag composition during smelting of vanadium titanomagnetite metallized pellets[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12): 2528-2537. DOI: 10.1016/S1003-6326(18)64899-X
|
[9] |
RORIE GILLIGAN, ALEKSANDAR N, NIKOLOSKI. The extraction of vanadium from titanomagnetites and other sources[J]. Minerals Engineering, 2020, 146: 106106. DOI: 10.1016/j.mineng.2019.106106
|
[10] |
朱俊士. 钒钛磁铁矿选矿及综合利用[J]. 金属矿山, 2000(1): 1-5. DOI: 10.3321/j.issn:1001-1250.2000.01.001
|
[11] |
王帅, 郭宇峰, 姜涛, 等. 钒钛磁铁矿综合利用现状及工业化发展方向[J]. 中国冶金, 2016, 26(10): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYE201610010.htm
|
[12] |
CHEN DS, ZHAO LS, LIU YH, et al. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes[J]. Journal of Hazardous Materials, 2013, 244-245. DOI: 10.1021/ie400701g
|
[13] |
ZHENG HY, ZHANG WL, GUO YC, et al. Transformation of Vanadium-Bearing Titanomagnetite Concentrate in Additive-Free Roasting and Alkaline-Pressure Leaching for Extracting Vanadium (V)[J]. Minerals, 2019, 9(3): 197. DOI: 10.3390/min9030197
|
[14] |
张杰西, 赵斌, 房彬. 我国铁尾矿排放现状及综合利用研究[J]. 再生资源与循环经济, 2015, 8(9): 29-32. DOI: 10.3969/j.issn.1674-0912.2015.09.009
|
[15] |
庹先国, 滕彦国, 徐争启. 应用现场XRF分析技术研究攀枝花钒钛磁铁矿床尾矿坝环境污染: 第四届世界华人地质科学研讨会[C]. 南京, 2002.
|
[16] |
HAO L, ZHANG B, FENG C, et al. Human health risk of vanadium in farmland soils near various vanadium ore mining areas and bioremediation assessment[J]. Chemosphere, 2020. http://www.sciencedirect.com/science/article/pii/S0045653520324413
|
[17] |
史志新. 某钒钛磁铁矿尾矿中铁、钛矿物的矿物学研究[J]. 有色金属(选矿部分), 2017(3): 1-6, 15. DOI: 10.3969/j.issn.1671-9492.2017.03.001
|
[18] |
于元进, 曾尚林, 曾维龙. ZCLA选矿机在毕机沟钒钛磁铁矿尾矿综合回收铁、钛中的应用[J]. 现代矿业, 2015, 31(3): 47-49, 52. DOI: 10.3969/j.issn.1674-6082.2015.03.016
|
[19] |
扈维明, 何刚, 张洪波. 太和钒钛磁铁尾矿再回收选矿试验研究[J]. 矿产综合利用, 2013(6): 50-53. DOI: 10.3969/j.issn.1000-6532.2013.06.014
|
[20] |
徐翔, 章晓林, 张文彬. 钛磁铁矿对钛铁矿浮选的影响[J]. 金属矿山, 2010(6): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201006023.htm
|
[21] |
陈超, 张裕书, 张少翔, 等. 某低品位钒钛磁铁矿干式选铁尾矿的选钛试验[J]. 钢铁钒钛, 2015, 36(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201503002.htm
|
[22] |
邓冰, 张渊, 杨永涛, 等. 攀西某钒钛磁铁矿选铁尾矿选钛试验研究[J]. 矿产综合利用, 2018(2): 91-96. DOI: 10.3969/j.issn.1000-6532.2018.02.020
|
[23] |
李城, 王伟之, 刘泽伟, 等. 钒钛磁铁矿中钛的柱机联合全浮工艺试验研究[J]. 矿产综合利用, 2019(3): 40-43. DOI: 10.3969/j.issn.1000-6532.2019.03.009
|
[24] |
张冬清, 李运刚, 张颖异. 国内外钒钛资源及其利用研究现状[J]. 四川有色金属, 2011(2): 1-6. DOI: 10.3969/j.issn.1006-4079.2011.02.001
|
[25] |
刘世友. 钒的应用与展望[J]. 稀有金属与硬质合金, 2000(2): 58-61. DOI: 10.3969/j.issn.1004-0536.2000.02.016
|
[26] |
文喆. 国内外钒资源与钒产品的市场前景分析[J]. 世界有色金属, 2001(11): 7-8. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO200111001.htm
|
[27] |
闵世俊. 钒钛磁铁矿尾矿中钒的提取工艺和动力学研究[D]. 成都: 成都理工大学, 2009.
|
[28] |
魏娟. 攀枝花钒钛磁铁矿尾矿中镓的分离富集与测定[D]. 成都: 成都理工大学, 2018.
|
[29] |
黄雯孝, 卢可可. 攀西钒钛磁铁矿尾矿中钪的提取工艺研究[J]. 矿产综合利用, 2020(2): 135-139. DOI: 10.3969/j.issn.1000-6532.2020.02.024
|
[30] |
杨伟卓. 钒钛磁铁矿尾矿中金银镍钴铜的综合回收利用工艺[D]. 湘潭: 湘潭大学, 2015.
|
[31] |
刘长淼, 吴东印, 吕子虎, 等. 某钒钛磁铁矿尾矿中钛铁矿的选矿研究[J]. 中国矿业, 2015, 24(5): 115-117, 128. DOI: 10.3969/j.issn.1004-4051.2015.05.025
|
[32] |
孟祥然, 周月鑫, 郭晓影. 铁尾矿综合利用研究综述[J]. 辽宁科技学院学报, 2019, 21(3): 11-14. DOI: 10.3969/j.issn.1008-3723.2019.03.004
|
[33] |
吕兴栋, 刘战鳌, 朱志刚, 等. 尾矿作为水泥和混凝土原材料综合利用研究进展[J]. 材料导报, 2018, 32(S2): 452-456. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2018S2103.htm
|
[34] |
胡毅, 冉启瑜, 张明胜. 四川盐边县红格钒钛磁铁矿矿石矿物及化学成分分布特征[J]. 贵州地质, 2020, 37(1): 40-45. DOI: 10.3969/j.issn.1000-5943.2020.01.005
|
[35] |
TECK-ANG K, ARUL A, SUKSUN H, et al. Strength assessment of spent coffee grounds-geopolymer cement utilizing slag and fly ash precursors[J]. Construction and Building Materials, 2016, 115: 565-575. DOI: 10.1016/j.conbuildmat.2016.04.021
|
[36] |
刘海军, 赵丽丽. 钒钛磁铁矿尾矿的活化及用作水泥混合材的试验研究[J]. 钢铁钒钛, 2020, 41(4): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT202004021.htm
|
[37] |
杨飞, 孙晓敏. 利用钒钛磁铁矿尾矿制备普通硅酸盐水泥熟料的研究[J]. 钢铁钒钛, 2020, 41(2): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT202002021.htm
|
[38] |
侯云芬, 赵思儒. 铁尾矿粉对混凝土性能的影响研究[J]. 粉煤灰综合利用, 2015(3): 17-19, 24. DOI: 10.3969/j.issn.1005-8249.2015.03.005
|
[39] |
刘娟红, 吴瑞东, 李生丁. 改性铁尾矿微粉混凝土的性能研究[J]. 江西建材, 2014(12): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JXJC201412016.htm
|
[40] |
刘佳, 倪文, 于淼. 用粉煤灰和铁尾矿制备高强混凝土[J]. 材料研究学报, 2012, 26(3): 295-301. https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201203013.htm
|
[41] |
李德忠, 倪文, 郑永超, 等. 大掺量铁尾矿高强混凝土材料的制备[J]. 金属矿山, 2010(2): 167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201002043.htm
|
[42] |
王修贵, 秦连银. 利用钒钛磁铁矿尾矿制备高强度混凝土的试验研究[J]. 钢铁钒钛, 2019, 40(3): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201903026.htm
|
[43] |
石磊, 宋宵. 钒钛磁铁矿尾矿对蒸压加气混凝土砌块的影响[J]. 钢铁钒钛, 2020, 41(3): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT202003019.htm
|
[44] |
李胜, 郑永超, 陈旭峰, 等. 某钒钛磁铁矿尾矿微粉对自密实混凝土性能的影响[J]. 金属矿山, 2019(11): 192-196. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201911033.htm
|
[45] |
YAN ZD, FENG FQ, TIAO J, et al. Effect of high titanium blast furnace slag on preparing foam glass-ceramics for sound absorption[J]. Journal of Porous Materials, 2019, 26: 1209-1215. DOI: 10.1007/s10934-019-00722-0
|
[46] |
CHEN ZW, WANG H, JI R, et al. Reuse of mineral wool waste and recycled glass in ceramic foams[J]. Ceramics International, 2019, 45: 15057-15064. DOI: 10.1016/j.ceramint.2019.04.242
|
[47] |
XI CP, ZHENG F, XU JH, et al. Preparation of glass-ceramics foam using extracted titanium tailing and glass waste as raw materials[J]. Construction and Building Materials, 2018, 190: 896-909. DOI: 10.1016/j.conbuildmat.2018.09.170
|
[48] |
李林, 姜涛, 陈超, 等. 攀西钒钛磁铁矿尾矿制备储水泡沫陶瓷的研究[J]. 矿产综合利用, 2020(6): 1-9. DOI: 10.3969/j.issn.1000-6532.2020.06.001
|
[49] |
LI L, JIANG T, CHEN B, et al. Overall utilization of vanadium-titanium magnetite tailings to prepare lightweight foam ceramics[J]. Process Safety and Environmental Protection, 2020, 139: 305-314. DOI: 10.1016/j.psep.2020.04.034
|
[50] |
陈永亮, 李杨, 张惠灵, 等. 高掺量低硅铁尾矿制备瓷质砖的研究[J]. 硅酸盐通报, 2016, 35(3): 927-932. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201603049.htm
|
[51] |
陈永亮, 杜金洋, 张惠灵, 等. 铁尾矿掺量对尾矿瓷质砖性能和结构的影响[J]. 中国陶瓷, 2018, 54(11): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTC201811008.htm
|
[52] |
崔雅婷. 高岭石型硫铁矿浮选尾矿的几种资源化利用工艺研究[D]. 绵阳: 西南科技大学, 2019.
|
[53] |
李华彬, 何安西, 邓天秀, 等. 尾矿瓷质砖配方及烧成工艺研究[J]. 中国陶瓷, 1999(1): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTC901.009.htm
|
[54] |
陈城. 钒钛磁铁矿尾矿库资源量调查及尾矿资源化利用[D]. 绵阳: 西南科技大学, 2020.
|
[55] |
吕子虎, 赵登魁, 程宏伟, 等. 某钒钛磁铁矿尾矿资源化利用[J]. 有色金属(选矿部分), 2020(1): 55-58. DOI: 10.3969/j.issn.1671-9492.2020.01.010
|