• China Science and Technology Core Journals
  • RCCSE China's Core Academic Journals (A-)
  • China Academic Journals Q1 Area in CNKI
  • Included in JST
  • Included in CNKI, WanFang Data and CQVIP Databases
  • Included in Russian Abstract JournaJ (AJ)
  • Included in CA
Advanced Search
HU Liang, HE Zhiguo. Research Progress of Ecological Restoration Technology in Mines[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 40-45. DOI: 10.13779/j.cnki.issn1001-0076.2020.04.006
Citation: HU Liang, HE Zhiguo. Research Progress of Ecological Restoration Technology in Mines[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 40-45. DOI: 10.13779/j.cnki.issn1001-0076.2020.04.006

Research Progress of Ecological Restoration Technology in Mines

More Information
  • Received Date: March 24, 2020
  • Publish Date: August 24, 2020
  • Issue Publish Date: July 31, 2020
  • Mineral resources are an important foundation for our country's economic development. However, with the continuous development of mineral resources, excessive or unprotected mining has caused serious damage to the ecological environment of the mines. Therefore, when improving the utilization rate of mineral resources, it is necessary to pay attention to the environmental problems caused by the mining process. Ecological restoration of the destroyed mining environment is the general trend of ecological civilization construction. Based on the background of mine ecological restoration research, this paper summarizes the current mine ecological restoration technologies: physical restoration technology, chemical restoration technology, bioremediation technology, and joint restoration technology, and summarizes the current research status at home and abroad.

  • [1]
    谢计平.矿山废弃地分析及生态环境修复技术研究进展[J].环境保护与循环经济, 2017(6):41-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lncxhjkj201706012
    [2]
    王欣若.土壤污染修复方法研究进展[J].科技经济导刊, 2020, 28(16):94-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahny201904083
    [3]
    周文亮, 白俞.矿山生态环境修复方法探究[J].世界有色金属, 2019(21):220-221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201921130
    [4]
    解坤梅, 何银忠.废弃矿区生态环境恢复林业复垦技术的探究[J].农村经济与科技, 2018(1):26-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncjjykj201816023
    [5]
    苑兴伟, 刘文锋, 张义森, 等.黄金尾矿生态修复技术研究[J].农业科技与装备, 2020, 295(1):8-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxhydqh202001005
    [6]
    王成龙, 王颖, 孔令东, 等.浅议我国矿山生态系统修复[J].采矿技术, 2020, 20(3):90-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caikjs202003028
    [7]
    朱琳.矿山生态修复技术方法研究[J].广州化工, 2011, 39(15):31-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzhg201115010
    [8]
    周鸣, 汤红妍, 朱书法, 等.EDTA强化电动力学修复重金属复合污染土壤[J].环境工程学报, 2014, 8(3):1197-1202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201403067
    [9]
    DENG C, ZHOU D, and CANG L. Electrokinetic treatment affected by EDTA and applied voltage drop for Cu mine tailings[J]. Journal of Agro-Environment Science, 2005, 24(1): 55-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh200501013
    [10]
    张梁.我国矿山生态环境恢复治理现状和对策[J].中国国土资源经济, 2002, 15(4):25-27. http://d.wanfangdata.com.cn/Periodical/zgdzkcjj200204009
    [11]
    晏闻博, 柳丹, 彭丹莉, 等.重金属矿山生态治理与环境修复技术进展[J].浙江农林大学学报, 2015, 32(3):467-477. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjlxyxb201503021
    [12]
    CHENF, YAO Q, TIAN J. Review of ecological restoration technology for mine tailings in China[J]. Engineering Review, 2016, 36: 115-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=338676b9ce7df4e10293d8318ff9ab0f
    [13]
    FU W, WANG Y, YU Q, et al. Effect of different improvement measures on the reclamation effect of iron tailings[J]. Northern Horticulture, 2012, 8: 158-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bfyany201208058
    [14]
    樊霆, 叶文玲, 陈海燕, 等.农田土壤重金属污染状况及修复技术研究[J].生态环境学报, 2013(10):1727-1736. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201310015
    [15]
    蔡妙珍, 邢承华.土壤氧化铁的活化与环境意义[J].浙江师范大学学报(自然科学版), 2004, 27(3):279-282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjsdxb200403017
    [16]
    李九玉, 徐仁扣.柠檬酸存在下酸性土壤中铝溶解动力学的初步研究[J].生态环境学报, 2004, 13(4):641-642. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj200404050
    [17]
    ZUPANC V, KASTELEC D, LESTAN D, et al. Soil physical characteristics after EDTA washing and amendment withinorganic and organic additives[J]. Environmental Pollution, 2014, 186: 56-62. DOI: 10.1016/j.envpol.2013.11.027
    [18]
    刘磊, 胡少平, 陈英旭, 等.淋洗法修复化工厂遗留地重金属污染土壤的可行性[J].应用生态学报, 2010, 21(6):1537-1541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201006028
    [19]
    HU X and YUAN X. In-situ remediation of mine tailings soil contaminated by heavy metals in Tongling city[J]. Resources and Environment in the Yangtze Basin, 2011, 20(11): 1378-1382. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJLY201111015.htm
    [20]
    LI Z, XIONG J, MA Q, YAN M, and ZOU F. Effects of organic manure and lime on growth and heavy metals accumulation in Alfalfa grown in soil polluted by lead/zinc mine tailings[J]. Guangxi Agricultural Sciences, 2009, 40: 1187-1191. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxnykx200909018
    [21]
    黄细花, 卫泽斌, 郭晓方, 等.套种和化学淋洗联合技术修复重金属污染土壤[J].环境科学, 2010, 31(12):3067-3074. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201012033
    [22]
    谢伟强, 李小明, 陈灿, 等.土壤中铅锌的稳定化处理及机制研究[J].环境科学, 2015, 36(12):4609-4614. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201512037
    [23]
    林维晟, 吴海泉, 胡家朋, 等.生物酶生态修复重金属污染土壤[J].环境工程学报, 2015, 9(12):6147-6153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201512080
    [24]
    XENIDIS A, STOURAITI C, PAPASSIOPI N.Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron[J]. Journal of Hazardous Materials, 2010, 177(123): 929-937.
    [25]
    GUO G, YANG J, CHEN T, et al. Concentrations and variation of organic matter and nutrients in municipal sludge of China[J]. China Water & Wastewater, 2009, 13(25): 120-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjsps200913037
    [26]
    WU Z, GU S, and LI H. Research on the remediation with sewage sludge for the heavy metal contamination in Pb-Zn mining areas[J]. Safety and Environmental Engineering, 2012, 4(19): 49-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzktaq201204012
    [27]
    LI Z, PENG A, and QU L. Effects of microbial remediation inocula on microbial community in gold-tailings soil with secondary tillage[J]. Hunan Agricultural Sciences, 2009, 5: 46-49.
    [28]
    李华娟.吉林省典型煤矿区废弃地土壤重金属污染评价及豆科植物修复效应研究[D].长春: 吉林大学, 2014.
    [29]
    NORMAND P, NOUINOUI I, PUJIC P, et al. Frankia canadensis sp. nov. isolated from root nodules of Alnusincana subspecies rugosa[J]. International journal of systematic and evolutionary microbiology, 2018, 68(9): 3001-3011. DOI: 10.1099/ijsem.0.002939
    [30]
    ISSAH G, KIMARO A, KORT J, et al. Quantifying biological nitrogen fixation of agroforestry shrub species using 15N dilution techniques under greenhouse conditions[J]. Agroforestry Systems, 2014, 88(4): 607-617. DOI: 10.1007/s10457-014-9706-5
    [31]
    韩煜, 全占军, 王琦, 等.金属矿山废弃地生态修复技术研究[J].环境保护科学, 2016, 42(2):108-113, 128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbhkx201602022
    [32]
    WU Y, CHEN C, WANG G, XIONG B, ZHOU W, XUE F, QI W, QIU C, LIU Z, Mechanism underlying earthworm on the remediation of cadmium-contaminated soil[J]. Science of the Total Environment, 2020, 728: 138904. https://www.journals.elsevier.com/science-of-the-total-environment/
    [33]
    徐池.重金属Cu对蚯蚓的驯化研究[D].南京: 南京农业大学, 2012.
    [34]
    ANGST G, FROUZ J, et al. Preferential degradation of leaf-vs. root-derived organic carbon in earthworm-affected soil[J]. Geoderma, 2020, 372: 114391. http://www.researchgate.net/publication/340848045_Preferential_degradation_of_leaf-_vs_root-derived_organic_carbon_in_earthworm-affected_soil
    [35]
    钱春香, 王明明, 许燕波.土壤重金属污染现状及微生物修复技术研究进展[J].东南大学学报(自然科学版), 2013, 43(3):669-674. http://www.cnki.com.cn/Article/CJFDTotal-DNDX201303040.htm
    [36]
    张杰, 龙琦, 李彦成, 等.酸性矿山废水与选矿废水协同生化处理研究[J].水处理技术, 2020, 46(7):94-98, 102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scljs202007019
    [37]
    MASSON-BOIVIN C, SACHS J L. Symbiotic nitrogen fixation by rhizobia-the roots of a success story[J]. Current Opinion in Plant Biology, 2018, 44: 7-15. DOI: 10.1016/j.pbi.2017.12.001
    [38]
    熊张东.重金属污染土壤的微生物原位修复技术研究进展[J].世界有色金属, 2019(9):269-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201909161
    [39]
    XIONG W, YIN C, WANG Y, et al. Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17 beta-estradiol-oxidizing dehydrogenases[J]. Journal of Hazardous Materials, 2020, 385: 121616. DOI: 10.1016/j.jhazmat.2019.121616
    [40]
    丁竹红, 胡忻, 尹大强.螯合剂在重金属污染土壤修复中应用研究进展[J].生态环境学报, 2009, 18(2):777-782. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj200902067
    [41]
    WU Y, MA L, LIU Q, et al. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii[J]. Journal of Hazardous Materials, 2020, 395: 122661. DOI: 10.1016/j.jhazmat.2020.122661
  • Cited by

    Periodical cited type(28)

    1. 姜杉钰,谭丽萍,冯聪,王佳佳,樊笑英,李小雨. 系统观下的矿山生态修复关键技术体系构建. 环境科学. 2025(01): 489-497 .
    2. 杨帅,崔文瑞,侯爱豫,赵小五,国华奇,高帅,田贵华. 生态文明下我国绿色矿山生态修复技术研究进展. 煤炭加工与综合利用. 2025(01): 111-114 .
    3. 袁浩,许尔文,赵维俊,王斌,敬文茂,赵晶忠,王荣新,武秀荣,马雪娥,张克海. 基于Citespace对矿山修复研究领域的可视化分析. 农业与技术. 2024(04): 78-81 .
    4. 赵颖豪,刘兴宇,吕莹,谭泽宝,吴昊宇,边晓垄,齐志雅,张沥匀. 微生物复合菌剂在西北典型煤矿破损生态区修复中的应用. 微生物学通报. 2024(05): 1391-1404 .
    5. 庞晓林,史丽涛,武玉坤,牛铭杰,刘秀帆. 西延高铁黄土路基高边坡生态防护技术. 铁路技术创新. 2024(01): 18-24 .
    6. 费启鸥,贾艳杰,刘述栋,王世平,周雷,薛文多,李宁,巩宗强,张晓蓉. 铁尾砂资源化利用及铁矿区土壤修复技术研究进展. 化工矿物与加工. 2024(07): 37-46 .
    7. 乔雪园,王先恺,陈祥,董滨,李翀. 市政污泥用于矿山废弃地生态修复的研究进展. 矿业安全与环保. 2024(06): 154-160 .
    8. 赵敏娟,李雨季,高天鹏,阎伟,杨建军,李肖肖,雷凯,申圆圆. 湿地超富集植物对重金属矿山生态修复的比较分析. 分子植物育种. 2023(18): 6252-6259 .
    9. 邵泽强,刘书奇,陆文龙,周锐,陈春宇. 基于Citespace的矿山生态修复的文献计量分析. 环境工程. 2023(S2): 707-711 .
    10. 卢誉之,陈银萍,曹渤,李玉强. 矿山生态修复技术体系构建. 环境保护科学. 2023(05): 41-50+54 .
    11. 兰中孝,张才兵,廖德武,王源. 采煤沉陷区地质环境现状及生态环境修复措施探析——以安龙县普坪采煤沉陷区综合治理为例. 地下水. 2023(06): 161-163+178 .
    12. 刘如. 矿山废弃地生态环境修复技术. 安徽农学通报. 2023(22): 95-98 .
    13. 翟紫含,王立威,周妍,张杰. 离子型稀土矿山生态保护修复思路与实践——以赣江流域为例. 有色金属工程. 2022(01): 137-143 .
    14. 刘晓文,肖祖未,刘伟. 矿山地质环境现状分析及其生态保护技术设计研究. 环境科学与管理. 2022(02): 160-164 .
    15. 陈兰洲,吴万银,李昌虎,何凡,张玉克. 真菌Aspergillus sp.对铜的耐受机制研究. 中南民族大学学报(自然科学版). 2022(02): 180-185 .
    16. 文婷,李胜,李眉. 湖南省湘乡市矿山生态环境现状及修复措施研究. 南方金属. 2022(02): 27-31 .
    17. 武剑. 露天矿山边坡稳定化治理与生态修复技术探究. 西部资源. 2022(03): 99-100+103 .
    18. 罗侠,刘燕,巩银萍,王帅,陶莹莹. 尾矿区污染现状与生物修复研究. 环境生态学. 2022(07): 78-82 .
    19. 胡一帆,王浩,焦磊,张立伟,南维鸽,董治宝. 青藏高原重大建设工程生态修复综合效益评估指标体系. 生态学报. 2022(18): 7565-7576 .
    20. 张金池,李翀,贾赵辉,刘鑫,孟苗婧. 功能性微生物在废弃矿山生态修复中的应用. 南京林业大学学报(自然科学版). 2022(06): 146-156 .
    21. 许闯胜,刘伟,宋伟,李寒. 差异化开展国土空间生态修复的思考. 自然资源学报. 2021(02): 384-394 .
    22. 崔伟,刘苗. 矿山生态环境的污染和生态修复. 资源节约与环保. 2021(02): 38-39 .
    23. 涂美义,柯波,陆世东,周洪文,张栋,潘若寒. 铜山口铜矿岩质边坡分区及生态修复适宜性研究. 矿业研究与开发. 2021(06): 182-186 .
    24. 李全生,韩兴,赵英,林海军,王新民. 露天煤矿植被修复关键技术集成与应用研究——以胜利露天矿外排土场为例. 环境生态学. 2021(06): 47-53 .
    25. 赵佳琪,陈晓琳,李玉灵. 冀东矿区不同植被恢复类型尾矿基质粒径组成和养分特征研究. 林业与生态科学. 2021(03): 262-268 .
    26. 罗秀芬. 储存方式对生石灰中有效氧化钙的影响研究. 世界有色金属. 2021(13): 168-169 .
    27. 李凤明,丁鑫品,孙家恺. 我国采煤沉陷区生态环境现状与治理技术发展趋势. 煤矿安全. 2021(11): 232-239 .
    28. 黄祺. 矿山生态修复技术和绿化植物配置方案. 绿色科技. 2020(24): 201-202 .

    Other cited types(32)

Catalog

    Article Metrics

    Article views (52) PDF downloads (7) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return