气固分选流化床潮湿细粒煤颗粒碰撞特性及能量耗散机制

Collision Characteristics and Energy Dissipation Mechanisms of Humid Fine Coal Particles in Gas−Solid Separation Fluidized Beds

  • 摘要: 空气重介质流化床可在上升空气的作用下,使加重质流化形成密度均匀稳定的床层,则精煤和矸石可按密度进行分选,从而实现煤炭资源的清洁高效利用。水分是影响煤炭分选的重要因素,易使颗粒在碰撞过程中黏附形成聚团,从而降低选后产品质量。因此,需要厘清潮湿颗粒碰撞过程中的碰撞特性及能量耗散机制。本研究基于颗粒碰撞黏附可视化系统,通过改变碰撞速度、碰撞颗粒的性质以及气流的相对湿度,研究了在颗粒碰撞过程中不同因素对最大接触位移、接触时间以及能量损失的影响规律。结果表明,随着碰撞速度提高,颗粒的初始动能增大,并在法向速度减小至零后迅速反弹,导致其最大接触位移显著增加,而接触时间缩短。当颗粒粒度增加时,其弹性势能提升使最大接触位移增加,接触时间延长。而当气流相对湿度增加时,液桥力增强导致碰撞阻力提高,最大接触位移减少,且由于碰撞颗粒形状的差异导致能量消耗存在差异,碰撞过程中的接触时间也不相同。此外,黏弹性损失及液桥所引起的损失随颗粒粒度和相对湿度增加而显著上升,其中黏弹性损失占主导地位。本研究为优化流化床操作参数和抑制聚团形成提供了理论依据,可为提升煤炭分选效率提供指导。

     

    Abstract: The air dense medium fluidized bed creates a uniform and stable bed layer through ascending airflow, enabling density−based separation of coal and gangue for clean and efficient resource utilization. Moisture content critically affects separation efficiency by inducing particle adhesion during collisions, which promotes agglomeration and compromises product quality. To address this, this work investigated collision characteristics and energy dissipation mechanisms of moist particles using a particle collision adhesion visualization system. The study examined the impacts of collision velocity, particle properties, and relative humidity on three key parameters: maximum contact displacement, contact time, and energy loss. Results indicate that as collision velocity increases, the initial kinetic energy of the particles also rises; following an abrupt reduction in normal velocity to zero, rapid rebound occurs resulting in a significant increase in maximum contact displacement while reducing contact time. When the particle size increases, its elastic potential energy increases, resulting in an increase in maximum contact displacement and an extension of the contact time. Conversely, as the relative humidity increases, the enhanced liquid bridge forces result in greater collision resistance, thereby diminishing the maximum contact displacement. Additionally, variations in shapes among colliding particles contribute to discrepancies in energy consumption during collisions which affect contact times differently. Furthermore, viscoelastic losses along with those induced by liquid bridges, increase significantly with larger particle sizes and higher relative humidity; in particular, viscoelastic losses dominate these interactions. This study provides theoretical insights for optimizing fluidized bed operational parameters and mitigating agglomerate formation, while providing essential guidance for improving coal separation efficiency.

     

/

返回文章
返回