基于超启发式算法的地下金属矿山多目标工序调度优化

Multi Objective Underground Mine Project Scheduling Optimization Based on Hyper−Heuristic Algorithm

  • 摘要: 为提升地下金属矿多采场多装备生产调度的决策效率和可靠性,针对地下金属矿山开采工序复杂、生产资源有限、生产任务量大等问题,构建了以最大化净现值、最小化总工序完成时间和最小化调度稳健性为目标函数的地下矿山多目标工序调度优化模型,并基于时间窗策略确定各项开采工序的最优开始时间,以实现矿山高效经济开采,科学有效调度采矿设备。设计了基于排序选择函数的超启发式算法求解多目标优化模型,算法采用基于多目标启发式指标的排序选择函数作为上层选择策略,并以NSGA−Ⅱ、MOEA/D和MOPSO作为下层元启发式算子。此外,以某地下锡铜矿山为工程背景展开模型验证,该矿山主要采用分段空场嗣后充填采矿法对矿石进行回采,实验结果表明提出的模型和算法能够解算出地下金属矿山最优的工序与设备调度方案,保证了矿山生产周期内的经济效益。

     

    Abstract: To enhance decision−making efficiency and reliability for multi−stope and multi−equipment production scheduling in underground metal mines, this study addressed the challenges of complex mining processes, limited production resources, and high−volume production tasks. A multi−objective process scheduling optimization model was developed for underground mines, aiming to maximize net present value (NPV), minimize total Makespan (completion time of all processes), and minimize schedule robustness. The model utilized a time window strategy to determine the optimal start times for mining processes, enabling efficient and economical extraction alongside scientifically effective equipment scheduling. A hyper−heuristic algorithm based on a Ranked Selection Function (RSF) was designed to solve the multi−objective optimization model. The RSF, serving as the high−level selection strategy, employed multi−objective heuristic indicators to guide the choice of low−level metaheuristic operators, namely NSGA−II, MOEA/D, and MOPSO. Model validation was conducted using a case study from an underground tin−copper mine in Guangxi, China. This mine primarily utilized the sublevel open stoping with subsequent backfill mining method. Experimental results show that the proposed model and algorithm can generate optimal process and equipment scheduling schemes for the underground metal mine, ensuring economic benefits throughout the mine's production lifecycle.

     

/

返回文章
返回