碱浸除钼渣综合回收钼硫铜的试验研究

Experimental Study on Comprehensive Recovery of Molybdenum, Sulfur and Copper from Alkaline Leaching Molybdenum Sludge

  • 摘要: 为了综合回收钨冶炼除钼渣中的钼、硫、铜,提出碱浸除钼渣分离铜和钼,氧化浸出液中S2-以分离硫和钼的思路,并对比了常压碱浸和高压氧碱浸两种工艺,详细考察碱浸过程氢氧化钠用量、温度、反应时间,液固比等工艺条件对钼浸出率、S2-残留率的影响规律。试验结果表明,常压碱浸在温度85℃、氢氧化钠用量为理论量1.1倍、反应180 min、液固体积质量比3 GA6FA 1时,钼浸出率为99.48%,铜浸出率低于0.1%,S2-残留率高于98%,选用硫酸与氯酸钠氧化碱浸滤液可实现S2-残留率低于0.2%。高压氧碱浸在温度85℃、氢氧化钠用量为理论量1.1倍、反应180 min、液固体积质量比3 GA6FA 1时,钼浸出率99.82%,铜浸出率低于0.5%,S2-残留率低至0.35%;两种工艺均可实现钼与铜、硫的深度分离,为除钼渣的综合利用提供切实可行的方案。

     

    Abstract: In order to comprehensively recover molybdenum, sulfur, and copper from molybdenum removal residues from tungsten smelting, this paper proposes the idea of alkaline leaching molybdenum removal residues to separate copper and molybdenum, and oxidation of S2- in the leaching solution to separate sulfur and molybdenum. This article investigates in detail the influence of sodium hydroxide dosage, temperature, reaction time, liquid-solid ratio and other process conditions on the molybdenum leaching rate and S2-residual rate in the alkaline leaching process. The test results show that when the normal pressure alkaline leaching temperature is 85 ℃, the sodium hydroxide dosage is 1.1 times the theoretical amount, the reaction is 180 minutes, and the liquid-solid mass ratio is 3 GA6FA 1, the molybdenum leaching rate is 99.48%, and the copper leaching rate is less than 0.1% The S2-residual rate is higher than 98%. When sulfuric acid and sodium chlorate are used as oxidants to oxidize the alkali leaching filtrate, the S2-residual rate is lower than 0.2%. When high-pressure oxygen alkaline leaching is at a temperature of 85 ℃, the amount of sodium hydroxide is 1.1 times the theoretical amount, the reaction is 180 minutes, and the mass ratio of liquid to solid is 3 GA6FA 1, the molybdenum leaching rate is 99.82%, the copper leaching rate is less than 0.5%, and the S2-residual rate As low as 0.35%; both processes can achieve deep separation of molybdenum from copper and sulfur, providing a practical solution for the comprehensive utilization of molybdenum removal sludge.

     

/

返回文章
返回