片段组装技术研发铜钼分离高效抑制剂

Using Fragment-assembly to Research High Efficiency Copper-molybdenum Separation Inhibitor

  • 摘要: 铜钼分离药剂是实现铜钼分离的核心,常用的铜钼分离抑制剂主要有硫化钠、硫氢化钠、诺克斯试剂、巯基乙酸钠及氰化物等,存在用量大、成本高、环境污染严重、适用性差等问题。针对这一问题,利用基于片段的分子组装技术,采用筛选确定先导化合物、先导化合物片段拆分再组装调控的方法,结合计算机辅助分子技术研发高效抑制剂BK511。MS软件计算该药剂与黄铜矿的相互作用能显著大于硫化钠、巯基乙酸钠等,且与辉钼矿的相互作用能大于零,实现选择性高效抑铜浮钼。铜钼矿山工业应用表明,BK511对铜抑制能力强,用量少,可以替代硫氢化钠(硫化钠),药剂用量为硫氢化钠用量的10%~20%,可大幅降低药剂成本,并显著改善车间操作环境,工业应用中可以大幅度降低选矿厂尾水中的硫化物含量。

     

    Abstract: Reagents are the core to achieve the separation of copper and molybdenum. NaHS(Na2S), Knox reagent, sodium thioglycolate and cyanide are commonly used copper molybdenum inhibitors, with the problems of the high dosage, high cost, severe environmental pollution, low industrial applicability and etc. To solve these problems, based on fragment assembly used in study, the method "screening to identify lead compounds, splicing and reassembling the lead compound, with the combination of computer aided molecular design techniques" was conducted to efficient inhibitor BK511. Material Studios (MS) software was used to calculate the interaction between BK511 and chalcopyrite. The results illustrated that the interaction between BK511 and chalcopyrite is significantly greater than that of NaHS and etc, to achieve selective inhibition of chalcopyrite. The industrial application of Cu-Mo separation showed that BK511 displayed outstanding inhibition performance with only 10%~20% dosage of NaHS, which is a solid candidate to substitute NaHS with much lower reagent cost and better environment footprint. The sulfide content is dramatically reduced in the tailings of the processing plant in the industry.

     

/

返回文章
返回